Department of Second Language Studies February 11, 2011

Individual Differences in Acquisition of Second Language Phonology

Isabelle Darcy, Hanyong Park & Chung-Lin Yang Indiana University & University of Wisconsin

Thank you

- Kate Nearing for her invaluable help in testing and coding participants' data
- David Pisoni and Kathleen Bardovi-Harlig for their support of this research
- all our participants for subjecting themselves to several hours of very difficult tests

Individual differences

Observed in all domains of L2 acquisition

- Syntax, morphology,...
- Phonology
- Not well understood
 - Cause of the differences
 - Exact extent of differences

Foreign accent or L2 phonology

- Factors influence how well the pronunciation and representation of the sound system of L2 will be acquired
 - Age of first exposure (younger = better)
 - L1 usage (less = better)
 - Iength of exposure (longer = better)
- But individual differences are observed even when all those factors are controlled

(Neuro-)Cognitive components

- Indeed, in language acquisition (in general), other factors play a role too
 - "Aptitude to learn languages" (Carrol & Sapon 1959)

Motivation	(Moyer 1999)
Cognitive flexibility	(less left-lateralized: Schneiderman & Desmarais 1988)
Anatomical differences	(Golestani et al., 2007)
Working memory (phone	ological short-term memory)
quantity of storage:	(Atkins & Baddeley, 1998; Papagno & Valla
quality of storage:	(Gathercole & Thorn, 1998; L2: Majerus et a
 complex span: 	(L2: Miyake & Friedman, 1998)

- Vocabulary size
- Attention control
- Processing speed

(Atkins & Baddeley, 1998; Papagno & Vallar 1995)
(Gathercole & Thorn, 1998; L2: Majerus et al., 2008)
(L2: Miyake & Friedman, 1998)
(for L1, Munson et al., 2005)
(Guion & Pedersen 2007; Segalowitz 1997)
(Salthouse 1996)

Their role for <u>phonological acquisition</u> is not clearly understood

Our study

- Conducted to examine factors linked to individual variation in L2 phonology
- 1) Establish a measure, an individual "profile" of phonological acquisition
 - Find tasks sensitive to overall proficiency
 - Reflect a level of acquisition in phonology (overall group differences)
 - And sensitive enough to show individual differences also within groups
- 2) Obtain cognitive measures
 - See if they correlate w. L2 phonology performance

Phonological acquisition

- Can be measured in different ways
 - Foreign accent judgments
 - Acoustic analyses of productions
 - Phonological processing or perception data
- Foreign accent judgments are too global
 - what particular non-native element in the foreign-accented speech causes a strict or lenient foreign accent judgment?
- Using production data alone is insufficient
 - because it is not clear to what extent production is a reflection of what the learner has acquired about the phonological system of a second language

Phonological processing (perception)

- We conducted the study to develop a way to measure "phonological acquisition" via perception data
- Measure the extent of L2 phonological knowledge at different levels
 - □ Segmental → ABX categorization task
 - Phonotactic → lexical decision task (involving consonant-clusters in non-words)
 - □ Suprasegmental → sequence repetition (involving stress patterns)

Measures of cognitive abilities

- We measured the following :
 - Working memory (both in L1 and L2)
 - Attention control (in L2)
 - Processing speed (in L1)
 - Vocabulary size (in L1 and L2)

Participants

- 2 groups of Korean native speakers living in Bloomington
 - Less than 1 year (short Length of Residence)
 - Longer than 2 years (long Length of Residence)
 - Verify that tasks are sensitive to (phonological) acquisition levels
 - Length of exposure to spoken English is one critical variable for phonological acquisition (Flege & Liu 2001)
 - I group of English native speakers to establish native-like level of performance

Control variables

- Besides L1 and Length of Residence:
- Chronological age
- Age of arrival to the US
- Amount of L2 use in daily interactions
- Motivation to learn English
 - 8 questions about their feelings, such as
 - "I enjoy learning new words and new ways of saying things in English"
 - "I want to improve my pronunciation of English"
 - 1 = strongly disagree; 11 = strongly agree

Demographics

	Length of Residence (months)	current age (yrs)	age of arrival (yrs)	current L2 use (%)	average motivation (1-11)
Long LoR :	49.5 (24-100)	30.5 (23-47)	25.6 (17-41)	56.5 (5-80)	8.9 (7.5 – 10.3)
Short LoR :	3.9 (2-10)	24.2 (20-37)	23.6 (20-36)	36.7 (10-90)	8.2 (7.2 – 10.3)
P (2-tailed t-test) :	0.0001	0.051	0.47	0.08	0.12

Both groups are reasonably well matched in all measures, except LoR Native speakers are matched in age (average 24 years)

Remainder of the talk and predictions

Presentation of the methods for perception tasks

- Group Results
 - We expect group differences to verify that the tasks can be taken as a measure of "acquisition"
 - Native speakers = baseline
- Individual scores
 - We expect individual variation within each group
- Brief overview: administration of cognitive tasks
- Results and correlation data with individual phonological scores
- Conclusions, questions

Methods: 1.

Perception tasks

Segmental

vowel and consonant contrasts (contrastive in English, not in Korean)

- [I i, U u, e ae]
- [I-r, p-f]

Conti	(male voice)	-	(male voice))	(female voice)	
	Α	{silence}	В	{silence}	X	response
	p e bod		p ae bo	bd	p e bod	A
	p@ p iik		p@ f iil	k	p@ f iik	В

Categorization task ABX

- Different voices (male female)
- Disyllabic non-words
- Mixed blocks (total of 7 possible contrasts)
- Speeded

Phonotactic

- Consonant Clusters (English: yes Korean: no)
 - "perceptual epenthesis" described as a perceptual mechanism to repair illegal cluster words
 - "sokdo" is heard as the word "sokudo" by Japanese listeners (Dupoux et al. 1999)
- Does perceptual epenthesis have consequences at the lexical level?
 - will L2 learners actually encode English cluster words such as "proud" with an epenthetic vowel (something like "pUroud") ?

If they do,

- A cluster word (e.g. "proud") will be activated through hearing a non-word that contains an epenthetic vowel (e.g. "pUroud")
 - Here: no need for perceptual repair (the stimulus is "legal" according to Korean phonotactics)
 - Lexical decision task: If "pUroud" activates the cluster word "proud" (= "yes" answer), we reason that they may not have overcome perceptual epenthesis and encoded "proud" as "pUroud"
- Speeded lexical decision task (~ 160 items)
 - Epenthetic vowel "U" (e.g. pUroud for "proud")
 - Control vowel "i" (e.g. bilood for "blood")

Suprasegmental

Suprasegmental: Word stress (lexical in English, not in Korean)

Condition | Α B tígu tíbu O Phoneme: Stress: míban mibán

al., 2008)

- \cap AABA $\xrightarrow{, \circ \mathsf{K}^{\kappa}}$ answer 1121
- sequence lengths: 2, 4, 5

5 physically different tokens for each item

"OK"

Response

12112

 $|\mathbf{S}| = 0 \text{ ms}$

(male voice)

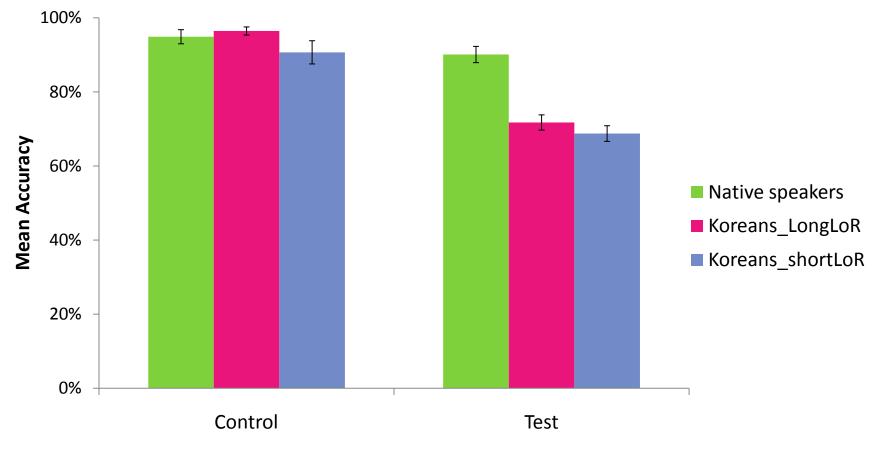
Α

B

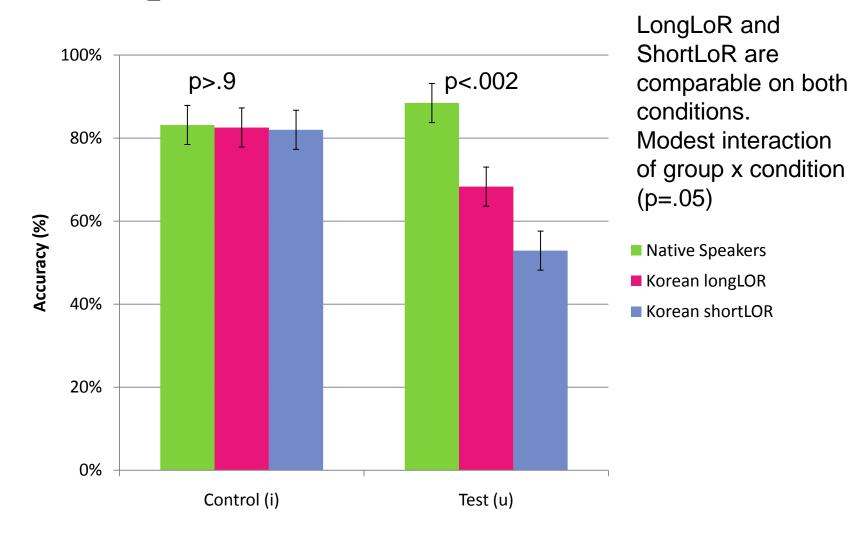
Α

B

Α

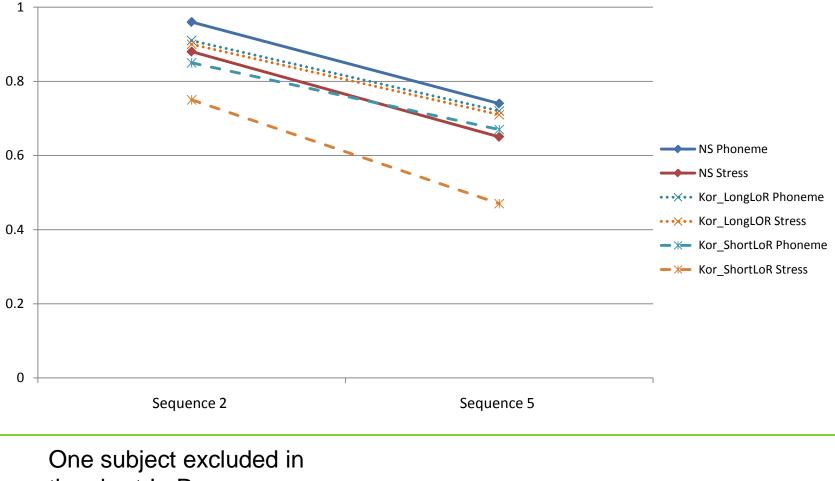

Response delayed with "OK"

Results


Perception tasks

ABX results

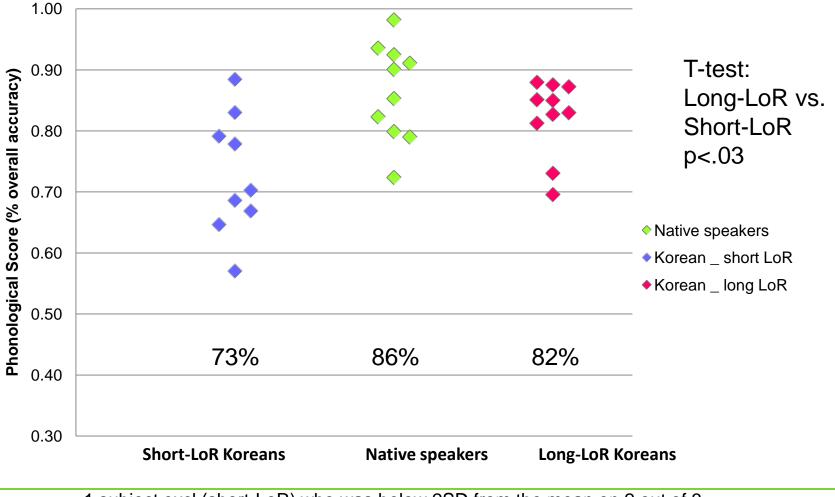
- 1. control condition: no difference between groups
- 2. test condition: No difference between LongLOR and ShortLOR, large difference with native speakers


Results: phonotactics in the lexicon

Anova comparing group (NS vs. NNS) and condition: main effect of group (p<.01), of condition (p<.02), and interaction (p<.001) Performance on a given condition varies according to group

Results: suprasegmental

All three groups on both conditions


the short-LoR group

Results: suprasegmental

- Modest interaction of subgroup and condition (p=.06)
 Effects of condition are different on each subgroup
- Lack of interaction between subgroup and sequence
 - Each group's performance declines similarly across the sequence lengths
- Effect of condition (p<.05) for both NS and short-LOR, but not for long-LOR (they process both as accurately)
- At sequence 5, both Korean groups perform equally on the phoneme condition, but not on the stress condition
 - Effect of group is significant for the stress condition only

Individual profiles: phonological scores

Average over all test and control conditions in the 3 perception tasks

1 subject excl (short-LoR) who was below 2SD from the mean on 2 out of 3 perception tasks

Cognitive measures

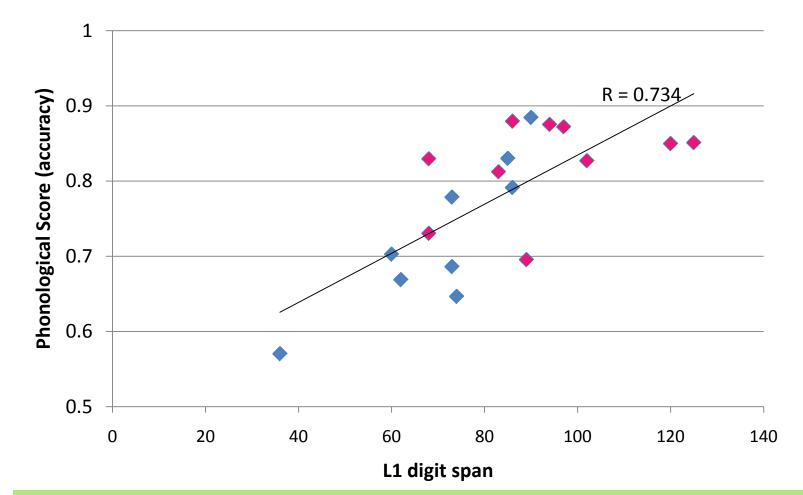
Details: 12 cognitive measures

- Working memory (both in L1 and L2)
 - Forward/backward digit span
 - Forward/backward non-word span
 - Sentence repetition with last word recall
 - Paired-Associates
- Attention control (in L2)

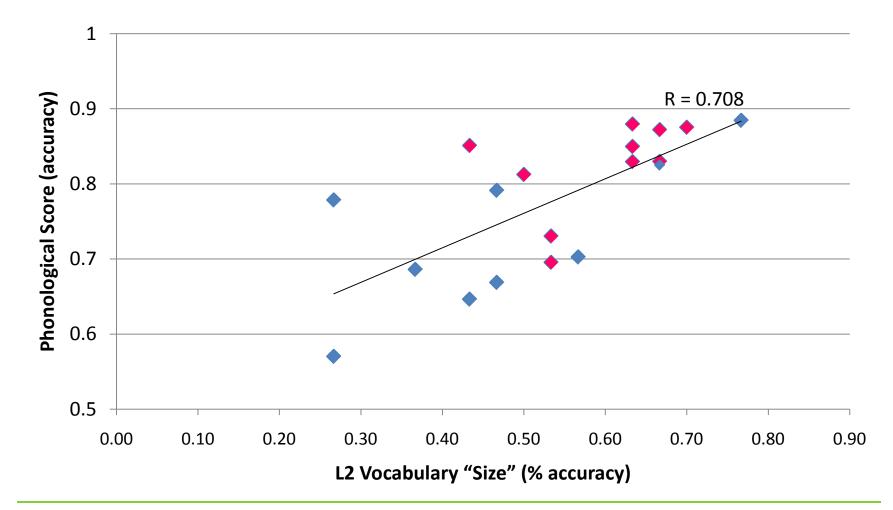
- → storage capacity
- \rightarrow complex span \rightarrow storage quality
- Speeded decision task involving shifting attention to a specified dimension of the auditory stimuli (e.g. "Male Voice?" or "Real word?")
- Processing speed (in L1)
 - Naming all three features of 30 geometric forms as quickly as possible (e.g. Big Red Square, Small Blue Triangle, etc...)
- Vocabulary "size" (in L1 and L2) → lexical retrieval
 - Boston Naming task (accuracy and speed)

Results of the cognitive measures

All measures were collected in individual sessions


- Session 1: L1 working memory, processing speed, vocabulary size L1, background questionnaire
- Session 2: (hearing test), L2 working memory, attention, vocabulary size L2, perception + production
- Data manually coded for working memory, processing speed and background questionnaires
- Perception, vocabulary and attention were computerized
- Production is still being evaluated
- Both non-native groups were comparable on all measures (except L1 and L2 digit span)

Correlations


- Performed on the "phonological score" for all 20 Korean subjects (regardless of group)
 Considering all measures
- 2 strongest are: r coeff. p. value
 L1 digit span
 .734**
 0
 L2 Lexical retrieval
 .708**
 0.001

Correlation with L1 digit span

Digit span is not the traditional span of 5 or 8. Here: Number of correctly repeated digits over forward and backward digit tasks. Maximum value is 208 (a "perfect" score with digit span of 10 is equivalent to 104)

Correlation with L2 lexical retrieval

L1 digit and L2 lexical retrieval are modestly correlated (r=.460, p<.05)

Phonological score also correlates with:

Measure	r coeff.	p. value
L2 digit span	.661**	0.002
Processing speed	.614**	0.005
Paired associates (L2)	.580**	0.009
L2 sentence recall	.544*	0.016
L1 sentence recall	.539*	0.017
Attention (RT)	509*	0.026
L1 nonword span	.484*	0.036

But not significantly with:	r	р	
L1 lexical retrieval	0.426	0.069	
L2 nonword span	0.421	0.073	

Specific tasks (test conditions) correlate with different cognitive measures.

- ABX correlates mostly with L2 digit and non-word span measures, with processing speed and lexical retrieval (accuracy)
- Sequence repetition (stress) is strongly correlated with the WM measures, since it relies heavily on WM. It also shows correlation with attention, L2 lexical retrieval, but not processing speed.
- Lexical decision, interestingly, does not correlate with any of the cognitive measures (WM, proc speed, attention) but does with lexical retrieval, in particular: naming speed in L1 (not accuracy). Our most recent production data (vowels) also correlates with performance in the lexical decision task.

Conclusions

- All measures of L1 working memory correlate with phonological score
- All but 1 measures of L2 working memory (with the exception of nonword span) correlate with phonological scores
- Processing speed and attention (only the reaction times, not the accuracy scores) also correlate
- L2 lexical retrieval ability is important, but L1 is not (likely a ceiling effect).

Discussion

- Perception data are valid: show acquisition
 - Group differences on 2 perception tasks
- But are also sensitive to within-group individual differences
- Those differences correlate very strongly with our working memory measures and L2 lexical retrieval, as well as processing speed.
 - Attention is less clear, and L1 lexical retrieval doesn't seem to be related to L2 phonological acquisition
- A longitudinal study would allow to see if those cognitive variables can "determine" the outcome in phonological acquisition

Further questions

- Perception alone is not the whole picture
- Combine with production data and see whether a higher score in perception is linked with a less accented production
 - Analysis of vowels, consonants, clusters, etc.
 - Foreign-accentedness judgments
- If not, it might be even more interesting to see what cognitive measures correlate stronger with production and less with perception

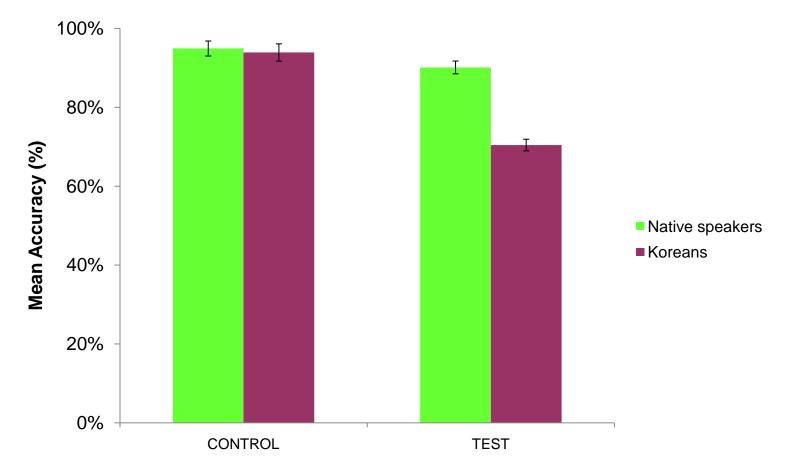
THANK YOU!

References

- Carroll, J. B., & Sapon, S. M. (1959). *Modern Language Aptitude Test*. New York: Psychological Corporation.
- Moyer, A. (1999). Ultimate attainment in L2 phonology. The critical factors of age, motivation, and instruction. *Studies in Second Language Acquisition*, 21, 81-108.
- Schneiderman, E. I., & Desmarais, C. (1988). A neuropsychological substrate for talent in second-language acquisition. In L. K. Obler & D. Fein (Eds.), *The exceptional brain. Neuropsychology of talent and special abilities* (pp. 103-126). New York, London: The Guilford Press.
- Dupoux, E., Kakehi, K., Hirose, Y., Pallier, C., & Mehler, J. (1999). Epenthetic vowels in Japanese: A perceptual illusion? *Journal* of Experimental Psychology: Human Perception and Performance, 25, 1568-1578.
- Dupoux, E., Sebastian-Galles, N., Navarrete, E., & Peperkamp, S. (2008). Persistent stress 'deafness': The case of French learners of Spanish. *Cognition, 106*(2), 682-706.
- Atkins, P. W. B., & Baddeley, A. D. (1998). Working memory and distributed vocabulary learning. *Applied Psycholinguistics, 19*, 537-552.
- Papagno, C., & Vallar, G. (1995). Verbal short-term memory and vocabulary learning in polyglots. *The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 48*(1), 98-107.
- Gathercole, S. E., & Thorn, A. S. C. (1998). Phonological short-term memory and foreign language learning. In A. F. Healy & L. E. Bourne (Eds.), *Foreign language learning. Psycholinguistic studies on training and retention* (pp. 141-158). Mahwah, NJ: Lawrence Erlbaum Associates.
- Majerus, S., Poncelet, M., Van der Linden, M., & Weekes, B. S. (2008). Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. *Cognition*, *107*(2), 395-419.
- Miyake, A., & Friedman, N. P. (1998). Individual differences in second language proficiency: working memory as language aptitude. In A. F. Healy & L. E. Bourne (Eds.), *Foreign language learning. Psycholinguistic studies on training and retention* (pp. 339-364). Mahwah, NJ: Lawrence Erlbaum Associates.
- Munson, B., Edwards, J., & Beckman, M. E. (2005b). Relationships between nonword repetition accuracy and other measures of linguistic development in children with phonological disorders. *Journal of Speech Language and Hearing Research*, 48(1), 61-78.
- Guion, S.G. & Pederson, E. (2007). Investigating the role of attention in phonetic learning. In O.-S. Bohn & M. Munro (Eds.) Language Experience in Second Language Speech Learning. Amsterdam: John Benjamins, 57-77.
- Segalowitz, N. (1997). Individual differences in second language acquisition. In A. de Groot & J. F. Kroll (Eds.), *Tutorials in bilingualism* (pp. 85-112). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. *Psychological Review, 103*(3), 403-428.
- Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. *Cerebral Cortex, 17*(3), 575-582.

- L2 vocabulary size does not correlate with any of the 5 demographic measures:
 - LoR
 - L2 Usage
 - Motivation
 - AoA
 - Age
- But does with
 - Processing speed, paired associates (.47, .45), L2 digit span (.65), L1 digit span, and RT in attention.

L1 digit span correlates with


- L2 digit span
- L2 recall
- (L1 recall and L2 paired associates, p=.059)
- L2 vocabulary size
- (Not L1 vocabulary size)
- None of the 5 demographic measures

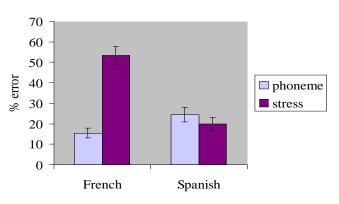
- L2 digit span correlates with all other L2 WM
- Processing speed is correlated
 - With all L2 WM measures
 - With 1 out of 3 L1 WM measures (recall)
 - With vocabulary size in L1 and L2
 - Does not correlate with any of the demographic measures

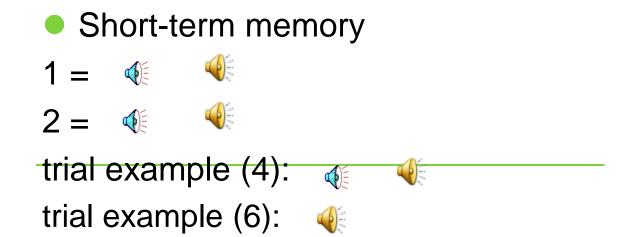
ABX (details)

- 3 vowel contrasts, 2 consonant contrasts, 2 ctrl.
 - 9 vowel items: 3 nonwords x3 vowels: i-l, u-U, E-ae
 - 6 consonant items: 3 nonwords x2 consonants: p-f, r-l
 - **9** control items (6+3) : **i-o**, **s-t**
- Consonantal environment & position controlled
 - bilabial, dental, velar
 - e.g. p_V_bod, n_V_d@n, g_V_k@rt
 - Onset, medial or coda position
 - e.g. #C_astik, t@ga_C#, p@_C_i:k
- 24 pairs with 4 orderings: 96 trials

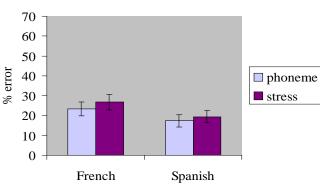
Results: ABX

No difference between LongLOR and ShortLOR, large difference with native speakers

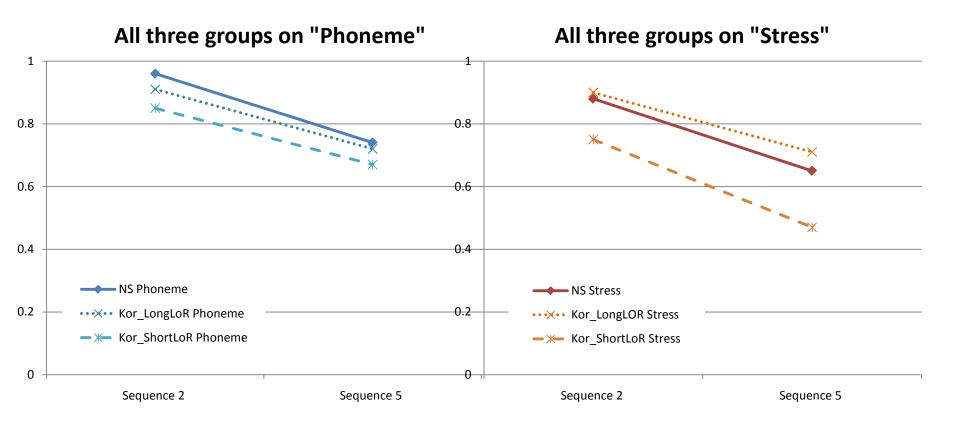

Sequence repetition (Dupoux et al. 2001, 2008)


- Condition A B
 Phoneme: túku túpu; kúpi kúti
 Stress: píki pikí; númi numí
- Sequence repetition

 AABA → answer 1121
 sequence lengths: 1, 2, 3, 4, 5, 6


Sequence repetition

6 tokens per item



1 token per item

Results: suprasegmental

One subject excluded in the short-LoR group

Attention task

RT in "baseline" condition, and in "switch" condition

Average RT	baseline (sd)	switch (sd)
Americans	910 (122)	973 (120)
Koreans (long-LOR)	783 (90)	830 (97)
Koreans (short-LOR)	961 (199)	1030 (208)

Comparisons on cognitive tasks: native speakers vs. Koreans

L1 Working Memory	digit span	nw-span	recall	processing sp. (acc./60)
Americans	73.9	21.0	41.4	
Koreans long-LOR	93.2	28.9	32.6	46.3
Koreans short-LOR	72.7	29.1	32.5	43.3

L2 Working Memory	digit span	nw-span	recall	paired assoc (mx 36)
Americans				
Koreans long-LOR	66.0	17.8	33.1	18.6
Koreans short-LOR	46.9	14.6	32.5	16.2
Lexical retrieval &	Accuracy	Accuracy	Naming	Naming
Lexical retrieval & Naming speed	Accuracy L1	Accuracy L2	Naming speed: L1	Naming speed: L2
		.	Ŭ	U
Naming speed	L1	.	speed: L1	U

